
CPS122 Lecture: Defining a Class

last revised January 14, 2016
Objectives:

1. To introduce structure of a Java class
2. To introduce the different kinds of Java variables (instance, class, parameter, local)

 Materials:

1. Features that can occur in a class handout
2. BlueJ BankAccount example to project
3. BankAccount example as a Netbeans project to demonstrate javadoc generation
4. Naming conventions / types of variables exercise

I. Objects and Classes in Java

A. Review from first class

1. Recall that a program in an object-oriented language such as Java
collection of interacting objects.

An object is a software entity that typically models something in
the real world and has three critical properties.

a) State - the object encapsulates some information about itself,
which are sometimes called its attributes.

b) Behavior - the object can do some things on behalf of other
objects

c) Identity - the object is distinguishable from all other objects of
the same general type.

(The definition of an object in terms of state, behavior, and
identity is a “3 AM phone call fact.”)

1

2. Each object in an object-oriented system belongs to some class.

a) A class can be thought of as the set of all objects of the same
kind - e.g. in the example we looked at in the first class, all the
savings account objects together constitute the SavingsAccount
class.

b) The basic unit of an OO program is the class. In Java,
everything must appear inside a class definition - there are no
stand-alone statements or functions.

3. When we write OO programs in a language like Java, we define
classes, and then use them as templates for constructing objects.
Each individual object is called an instance of its class, and each
object is an instance of exactly one class.

Example: Recall the SavingsAccount example we looked at in the
first lecture

a) OPEN IN BLUEJ - Note two classes

b) We will now take a look at the code for one of these classes:
SavingsAccount

HANDOUT: Features that Can Occur in a Class

B. Each file should begin with a file/class comment - a comment (in English)
that describes the purpose of the class and specifies its author and date.

NOTE in handout

Generally each class is in its own file. In Java, the name of the file will
be the same as the name of the class - e.g. the example would appear in a
file called SavingsAccount.java. (This is a requirement enforced by
the Java compiler).

There is the possibility of defining a class inside another class - but we
won’t discuss that now..

2

C. Each class has a name. The name should be clearly related to the
purpose of the class.

Naming convention: mixed case beginning with capital letter

D. The definition of a class is delimited by braces. (These are always
required).

E. A class generally has instance variables.

1. Each object that is an instance of a given class has its own copy of
each instance variable. These variables exist as long as the object
exists.

2. In general, each piece of information that an object needs to know
will be represented by an an instance variable.

NOTE instance variables accountNumber and currentBalance
in handout.

Insofar as possible, the name of an instance variable should make
its purpose crystal clear. In some cases, a supplementary comment
may be desirable to add information not obvious from the name.
(e.g. the comment on currentBalance that notes how it is
represented.)

3. Further, each object will also need an instance variable to refer to
each kind of other object that it knows. (I.e. the instance variables
hold answers to two questions: what does this object know? and
who does this object know?)

There are three possibilities for these instance variables

a) An instance variable may be of a primitive type - thus
representing a simple value:

Examples in handout: accountNumber, currentBalance

3

b) An instance variable may simply be a reference to some other
object.

Example in handout: owner

c) Or, an instance variable may be a special kind of object called a
collection which holds references to several other objects of the
same kind.

EXAMPLE: Since bank accounts can have multiple owners
(joint accounts), instead of an instance variable called owner,
we might have one called the owners that is a collection.
(Collections are a topic we will discuss later this semester - so
far now we don’t know how to do this in Java, so we’ll stick
with a single owner for this example.)

4. Conceptually, we decide on the instance variables for a class early
in the process. In this example, they are placed at the beginning of
the class. However, a case can also be made for listing the instance
variables near the end of the class declaration. Either place is
acceptable (but not strung out everywhere!)

F. A class generally has one or more instance methods (mutators and
accessors)

1. In general, each thing an object needs to be able to do will be
represented by an instance method.

NOTE in handout

2. Methods are of two general types

a) A mutator changes the state of the object.

Examples in handout: deposit(), withdraw(),
calculateInterest()

4

b) An accessor furnishes information about the state of the object

Examples in handout: reportBalance(),
getAccountNumber()

3. A method may or may not have one or more parameters, which
represent information flowing into the method from its caller. A
parameter is specified in the method header and - like all variables
in Java - is declared to be of a particular type.

Examples in handout: deposit() and withdraw() each have a
single int parameter specifying the amount of money to be
deposited or withdrawn.

calculateInterest(), however, does not need a parameter

Not shown in the handout is the possibility that a method might
have more than one parameter. In fact, there is no limit on the
number of parameters a method may have.

4. A method may or may not have a single return value, which
represents information returned to the caller when the method is
used. The type of the return value is specified before the method
name; if there is no return value, void is used.

Examples in handout: deposit(), withdraw(),
setAnnualInterestRate(), calculateInterest() do not
have return values, but reportBalance() and
getAccountNumber() do. The return value is a String in the
case of reportBalance(), int in the case of
getAccountNumber().

5. Can you see any relationship between the type of the return value
and whether the method is an accessor or mutator?

ASK

5

6. The body of a method is always delimited by braces, even if it is
just one line.

Compare this to Python, where the body of a function was
delimited by indentation. In Java, we use the same indentation
conventions, but the compiler pays attention to the braces, not our
indentation.

7. An instance method is called by giving the object to which it is to
be applied and the name of the method (together with its actual
parameters), separated by a dot.

Example: The constructor of SavingsAccount invokes the
addAccount() method of its owner.

8. Naming convention: mixed case beginning with a lowercase letter,
always followed by a pair of parentheses

G. A class generally has one or more constructors. A constructor is similar
to a method, but is used to initially create an object of the class. It's
purpose is to put the instance variables in a correct initial state.

1. Two things distinguish a constructor from methods:

a) The name of a constructor is always the same as the name of
the class - hence always begins with an uppercase letter.

b) A constructor never has a return type - and specifying a return
type (even void) is neither required nor allowed.

Example: Show in handout

2. However, a constructor may - and generally does - have parameters
which specify the information needed to initially create an object
of the class.

6

Example: the SavingsAccount() constructor has the Customer
who owns the account as a parameter. It does not need a parameter
for the account number, which the constructor itself assigns, nor
for the initial balance, because this is always zero;

H. A class may also have class variables, constants, or methods .

1. A variable that holds a value that is shared by all the objects in the
class can be declared as a class variable.

Examples in handout: nextAccountNumber,
annualInterestRate

One is used to ensure that each account gets a unique number. The
constructor uses this to assign a number to a newly-created
account, and then adds one to it. Obviously, this must be shared by
all instances of the class.

Another is used to hold the interest rate, which is (in this case at
least) is the same for all instances of the class.

2. A constant value that is the same for all objects in the class, and
that either methods or clients of the class need to make use of can
be declared as a class constant.

Example in handout: many banks have a minimum balance
allowed in account for paying interest. (An account with a balance
below this amount is not eligible for interest.) Since this rule
applies to all accounts, a class constant
MINIMUM_BALANCE_FOR_INTEREST is used. (Constants use a
special naming convention as here)

(One might argue that this should also be a variable, so that the
bank can change its rules. I made it a constant here so that I could
illustrate both possibilities!)

7

3. A method that represents a responsibility of the entire class, not
associated with any particular object in the class, can be declared
as a class method.

4.

a) NOTE in handout: setInterestRate() method.

b) A class method is called by giving the name of the class of
which it is a part and the name of the method (together with its
actual parameters), separated by a dot.

Example: to change the interest rate for all SavingsAccounts to
3%, one would write
SavingsAccount.setAnnualInterestRate(0.03);

5. Instance methods can freely make use of class constants, variables,
and methods; but that class methods cannot use instance variables
or methods since they are not associated with any particular
instance of the class.

6. Look at the handout: how are class variables, constants, and
methods distinguished from instance variables and methods?

ASK

They are declared static.

I. Note the use of comments throughout the class - a file/class prologue,
method prologues, and prologues for constants.

1. In Java, the preferred way to do this is with a comment that goes
immediately before the entity, begins with /**, and includes tags that
begin with “@”. (The permitted tags depend on what type of comment
you are writing - e.g. for a class comment tags like “@author” occur;
for a method comment tags like “@param” occur.)

8

2. This style of comment is called a “javadoc” comment - and gets its
name from a program (called javadoc) which automatically creates a
set of documentation from code containing this style of comment.

DEMO - “Generate Javadoc” in “Run” menu of Netbeans for
BankAccount project. Show result for SavingsAccount, walking
through the javadoc relative to the handout for the code.

II.Variables and Constants

A. We have now seen three different kinds of variables/constants.

1. What are they?

ASK

a) Instance variables

b) Class variables

Note: instance and class variables are sometimes also called fields

c) Parameters

2. There is a fourth type of variable, known as a local variable, that
pertains only to a single method.

Examples in handout: result and cents in reportBalance()

a) Such variables are usable only in the method in which they are
declared, and only after the point at which they are declared (so
a local variable declared in the middle of a method could not be
used at the beginning.)

b) They do not retain their values - and, in fact, cease to exist at all
-between calls to the method

c) Parameters are like local variables in that they pertain only to
the single method in which they are declared.

9

3. How do these different types of variable differ?

ASK

a) Each object belonging to a class has its own copy of each instance
variable, that exists as long as the object exists.

Example: any one of you can answer a question like “what is your
name?” (Each of you has an “instance variable” called name)

b) All objects belonging to a class share a single copy of each
class variable.

Example: all of you would give the same answer to the question
“how many credits does it take to graduate?”

c) Parameters and local variables exist only while a particular
method is being executed.

Example: If I were to ask you “what are you eating?” while you
are sitting in Lane, you could give me an answer. But it would
be silly for me to ask you that question while you are asleep,
and probably offensive for me to ask you that question now!

4. Where are they declared?

ASK

a) Instance and class variables are declared outside any method -
often at the start or end of a class.

b) Parameters are declared in a method heading.

c) Local variables are declared inside the body of a method.

5. The names of variables must be unique within their scope.

10

a) A class may not have two instance or class variables with the
same name. But two different classes can have instance/class
variables with the same name.

b) A method may not have two parameters or local variables with
the same name. But two different methods can have
parameters/local variables with the same name.

c) It is possible for a parameter or local variable of a method to
have the same name as an instance or class variable of the class
in which the method occurs.

Example: the owner parameter of the SavingsAccount
constructor has the same name as an instance variable of the
SavingsAccount class.

d) When this is done, the local declaration creates a hole in the
scope of the instance/class declaration.

(1)When the name occurs by itself, it is understood as referring
to the parameter/local variable.

Example: the second and third occurrences of owner

(2) It is possible to refer to an instance variable by preceding it
with this.

Example: the first occurrence of owner. Thus, this line says
“set the owner instance variable of the SavingsAccount
being constructed to be equal to the value specified by the
caller through the owner parameter”.

(3)A construct of this form is something of an idiom in
constructors - the parameter specifying the initial value for
the instance variable of the same name.

Example: Note in BlueJ demo: Customer constructor

11

6. Case convention for all types of variables: mixed case, beginning
with a lowercase letter.

B. Any variable can be given a value by an initializer when it is declared.

1. Example: nextAccountNumber in the SavingsAccount example

2. If an instance variable does not have an initializer, then it is
initialized to a default value (e.g. 0 for numbers).

3. If a local variable does not have an initializer, it cannot be used
until it is given a value by an assignment statement.

C. A constant is a special kind of variable that is given a value that
cannot be changed.

1. Constants are declared using the word final.

2. Constants, of necessity, must be given a value by an initializer.

3. Constants are declared as class constants (static), since it makes
little sense to think of different instances of a class as each having
their own value of some constant!.

4. Constants typically are given names that consist of all uppercase letters,
with underscores used to separate words (since mixed case is not used.)

Example: MINIMUM_AMOUNT_FOR_INTEREST.

D. It is also possible to have instance variables that are given an initial
value, and then cannot be changed after that.

1. They are also declared using the word final.

2. Though they can be given a value by an initializer, they are
typically given a value by a constructor.

12

3. They have a name that looks like any other variable name.

Example: accountNumber - once given a value by the constructor,
it cannot be changed.

III.Visibility Specifiers

A. The constructor(s), instance and class variables, instance and class methods,
and constants of a class are called the members of the class. Look at the
members in the handout. What common characteristic do they all exhibit?

ASK

Each is preceded by one of the words private or public.

(Note: parameters and local variables are not members of a class - they are
local to a particular method in a class.)

B. The words private and public are called visibility specifiers.

1. A private member of a class is only visible to objects belonging
to that class.

2. A public member of a class is visible to objects belonging to any
class.

3. There are two other visibilities which we will meet later (they
pertain to things we haven't talked about yet.)

a) protected visibility- specified by the modifier protected.

b) package private visibility - specified by the absence of any
modifier. (Thus, if you forget to use one of private and
public - which works correctly in many cases, but is not what
you want to do!)

13

4. private members often do not have javadoc comments, since (by
default) the javadoc program does not include private members
from the documentation it generates. However, it is sometimes
useful to use comments of this form anywhere for the benefit of
someone reading the class.

C. Visibilities pertain to one of the key features of OO: encapsulation. A
class encapsulates the details of its implementation - which means that
a the details of how a class is implemented can be changed without
affecting other classes that make use of it. Moreover, encapsulated
variables are not subject to surprise changes.

(This is one aspect of OO that is not supported by Python)

D. For now, as a general rule:

1. Instance and class variables should be private. There will be cases
where you want to use protected or package visibility, but it is hard
(if not impossible) to imagine a situation where public would be
appropriate.

2. Constructors, instance and class methods are often public.
However, if a method is used only to help implement some other
method, and is not needed outside objects of the class, it may be
appropriate to make it private or one of the other visibilities.

3. Constants are often public. Again, if a method is used only to help
implement some other method, and is not needed outside objects of
the class, it may be appropriate to make it private or one of the
other visibilities.

14

IV.Naming Conventions and Declaration Place

A. There are some well-established naming conventions used in Java
(and other OO languages) that make it possible to tell what kind of
thing a name refers to from the form of the name.

B. Most names used a mixed-case convention - all letters (save possibly
the first) are lower case; but the first letter of each word is capitalized.

Example: thisIsTheNameOfSomething

Numeric digits can occur anywhere inside a name, though they cannot
be the first character

Example: r2d2

C. A mixed case name beginning with an upper-case letter always refers
to a class or a constructor. The name of a constructor is always
followed by parentheses, while the name of a class is not. (But note
that the name of a constructor is always the same as the name of its
class)

Examples: 	
 SavingsAccount - a class
	 	 SavingsAccount() - constructor for this class

D. A mixed case name beginning with a lower-case letter refers either to
a variable or a method.

1. The name of a method is always followed by parentheses, while
the name of a variable is not.

Examples: 	
 currentBalance - a variable
 	
 	
 withdraw() - a method

2. In the case of variables, what kind of variable it is depends on
whether it is declared static, and where it is declared.

15

a) Declared outside of any method: instance or class variable -
class variable if static, instance variable if not.

b) Declared in the heading of a method: parameter.

c) Declared in the body of a method: local variable.

E. Constants use a name composed of all uppercase letters, with words
separated by underscores

Example: MINIMUM_AMOUNT_FOR_INTEREST

F. Do exercise on naming conventions / declaration place

16

